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Abstract

Model updating improves the correlation between the response of the real
structure and the response of the finite-element (FE) model; however, the
selection of the updating parameters (parametrization) is crucial for its suc-
cess. Using full-field modal shapes, a large number of parameters can be
updated, e.g., the Young’s moduli of all the finite elements; however, the
structural response is not necessarily sensitive to an arbitrary parameter,
making the optimization problem ill-conditioned. Additionally, the compu-
tation of the full sensitivity matrix is not feasible for relatively large FE
models. Not all locations are equally important for model updating; at loca-
tions of the highest mechanical loads, more focus is required. In this research,
the updating parameters are based on the curvature of the 3D full-field exper-
imental shape, where locations with high curvature are associated with high
sensitivity. The assumption is initially researched with the Euler-Bernoulli
beam elements and second-order tetrahedrons. The proposed method is in-
vestigated on numerical and real experiments, where successful updating was
confirmed. With the proposed parametrization and updating approach, a ge-
ometrically complex structure is parametrized and the parameters updated
without significant user input, generalizing the model-updating procedure.
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1. Introduction

Finite-element (FE) model updating [1] minimizes the differences between
the real structure and the FE model. The Marquardt approach is widely used
to solve the non-linear least-squares minimization [2] of the cost function (a
measure of the difference between the responses of the numerical model and
the real structure). Weights have been applied to the measured data [1]
and various regularization methods have been used to improve the condi-
tioning of the inverse problem [3, 4]. Recently, Bayesian methods for model
updating [5] have been heavily researched, and non-linear models were also
updated [6, 7]. Because the cost function is usually smooth and convex near
the optimal solution [8], the Interior Point Method (IPM) [9, 10] can be
used to solve the minimization problem. The IPM successfully deals with
the non-linear cost function as well as with the non-linear constraint func-
tions of the updating parameters. Since the IPM is gradient-based, it is less
computationally expensive than the global optimization algorithms [8].

Since the natural frequency is a global parameter, the modal shapes have
to contribute the information about the local response behaviour. A spa-
tially dense, full-field modal shape, in contrast to a sparse modal shape,
provides the response information for the entire structure, making the local-
ized parameter identification possible [11]. When updating a large number
of parameters, the high spatial density of the response information ensures
an over-determined optimization problem [11].

High-speed cameras have been used to capture the full-field, highly spa-
tially dense response of the structure. One of the most widely used methods
for displacement identification is the Digital Image Correlation (DIC) [12, 13]
algorithm. For a DIC measurement, the surface of the object must have a
unique visual pattern, i.e., a speckle pattern, which is usually applied with a
spray or a sticker [14] or is projected onto the surface [15]. Recently, the 3D
DIC [16] technique with stroboscopic lighting was used by Su et al. [17] to
characterize underwater propeller blades. Gorjup et al. [18] showed that, for
a linear, time-invariant system, the 3D response can also be measured using
a frequency-domain triangulation. Renaud et al. [19] used a single camera
to reconstruct 3D shapes by projecting the FE modal shapes. In contrast,
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a still camera was used by Javh et al. [20] and Gorjup et al. [21] to identify
2D [20] and 3D [21] full-field deflection shapes, respectively. Chen et al. [22]
used a full-field measurement to identify the dynamics of a non-linear struc-
ture. Li et al. [23] used an adaptive filtering algorithm to enhance the signal
power, decreasing the effect of the high noise level in the measurement. Javh
et al. [24] proposed a hybrid method, a combination of the simplified optical
flow method with a high-dynamic-range sensor to identify the modal shapes
under the noise floor of the Frequency Response Function (FRF).

The full-field structural response has been seen as advantageous in iden-
tifying the localized anomalies on the structure; e.g., Wang et al. [25] used
Chebishev polynomials to compare the numerical and measured responses
of the structure. Different full-field measurement methods were compared
by Zanarini [26], i.e., ESPI, SLDV and high-speed-camera measurements us-
ing 3D DIC. A sensitivity approach with full-field modal shapes obtained
from high-speed-camera measurements was used by Cuadrado et al. [27] and
location-specific weighting was introduced by Zaletelj et al. [11], to update a
large number of localized parameters and identify the anomaly on the struc-
ture.

The updating parameters are typically chosen based on significant engi-
neering insight. To avoid the parameter-selection process, Kim et al. [28]
segmented the FEs based on the sensitivity of the response to the change
of the FE property and improved the conditioning of the optimization prob-
lem. Shahverdi et al. [29] used a hierarchical dendrogram [30] to segment the
columns of the sensitivity matrix and identify the parameters that have a
similar effect; Bartilson et al. [3] also included modal shapes in the segment
selection. Bartilson et al. [4] used the Singular Value Decomposition (SVD)
algorithm to compute the reduced-order parametrization.

While the segmentation (the term clustering is used by some authors)
of the finite elements has been addressed in previous research, the com-
putation of the response sensitivity to each FE parameter was required,
making the approach computationally expensive and not feasible for large
FE models. Additionally, full-field response data were not used with the
researched parametrizations. In this research, the parameter segments are
determined for each experimental 3D full-field shape separately, based on the
shape’s curvature. Using the modal shapes, the updating is performed on
multiple consecutive levels (starting with first modal shape), using a single
parametrization on each level.

This manuscript is organized as follows. Section 2 presents the theoretical
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background of the 3D-deflection-shape identification and the finite-element-
model-updating method. Section 3 introduces multi-level parametrization,
presents the justification for the curvature-based parametrization and lays
out the updating algorithm. Sections 4 and 5 present the numerical and real
experiment, respectively. The conclusions are drawn in Section 6.

2. Theoretical background

The prior knowledge about the 3D deflection shape’s identification from a
single high-speed camera using the frequency-domain triangulation [18] and
the Interior Point Method for FE model updating [8] are discussed in this
section.

2.1. Frequency-domain triangulation

To measure 3D deflection shapes using a single high-speed camera, the
two-step frequency-domain triangulation method [18] is used. The first step
in the shape-identification procedure is to measure the 2D deflection shape’s
images in multiple camera views. For Linear Time-Invariant (LTI) structures
under stationary excitation, this can be achieved using a single camera by ei-
ther moving the structure and keeping the camera stationary or changing the
position of the camera around the structure. The camera’s extrinsic param-
eters (positions and rotations relative to the structure) are reconstructed in
a calibration using the test images [18]. For each of the multi-view measure-
ments, the deflection shapes are computed by transforming the high-speed-
image sequences of a structure under stationary broadband excitation into
the frequency domain using Fourier Transform.

The second step of the procedure is the multi-view triangulation. Al-
though the perspective camera projection is non-linear in Euclidean space,
for a vibrating specimen exhibiting a small harmonic motion, the triangula-
tion step can be performed in the frequency domain [18]. Using the multi-
view frequency-domain deflection shape measurements, obtained in the first
step of the procedure, together with the known positions of the observed
points in the multiple views, spatial deflection shapes of the vibrating object
are obtained using the linear triangulation algorithm [18]. The two steps of
the frequency-domain triangulation procedure are outlined in Fig. 1.

In this research, the 3D response data were normalized to the measured
excitation to form the FRFs [31]. Since the excitation profile was the same
for all the camera views, one of the measured excitation signals was chosen

4



1

2

3

4

Camera calibration

View 1 View 2

View 3View 4

Vibrating specimen

Step 1: Multi-view deflection shape measurement

 X(ω) = U(ω) - U 
REF 

Deflection shape computation

X(ω)
U 

REF

U(ω)

Frequency-domain triangulation

Step 2: Spatial deflection shape computation

Figure 1: The frequency-domain triangulation procedure.

for the normalization. From the FRFs, the modal shapes were identified
using a Python package pyEMA [32] and later used in the model-updating
procedure.

2.2. Interior Point Method for model updating

To minimize the difference between the measured and the numerically
computed values, e.g., natural frequencies and modal shapes, the Interior
Point Method [8] is used. The objective is to minimize a non-linear cost
function f(θ) with respect to the updating parameters θ that is subject to
inequality constraints:

min
θ

f(θ)

s.t. g(θ) ≤ 0,
(1)

where f : Rr → R and g : Rr → Rq. r is the number of updating parameters
and q is the number of inequality constraints. The inequality constraints
are defining the feasible region of the parameters, e.g., a negative Young’s
modulus is physically not meaningful.
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The cost function is defined as:

f(θ) = ||λ̂− λ||2 + ||φ̂− φ||2, (2)

where λ̂ ∈ Rm are the measured eigenvalues, λ ∈ Rm are the numerical
eigenvalues, φ̂ ∈ Rm×l are the measured modal shapes and φ ∈ Rm×l are
the numerical modal shapes. m and l are the number of included eigenval-
ues/modal shapes and the number of locations in the modal shapes, respec-
tively. || · || denotes the Euclidean norm. An issue of matching the modes
from the measurement and numerical analysis arises when computing the cost
following Eq. (2), since it is not necessary that all of the modal shapes are
measured, making the simple ordering by natural frequency an inappropriate
approach [1]. Additionally, the changes in the parameter values during the
updating procedure can cause the shifting of shapes. This problem is gen-
erally addressed by implementing a Modal Assurance Criterion (MAC) [33]
filter; the modes with the highest MAC value are paired. In this research,
the eigenvalue similarity was also included in the mode-matching process by
implementing the Modal Match Index (MMI) [34].

Usually, the modal shapes are compared using the MAC values [1], which
is not ideal for updating the localized parameters, since it is, like the natural
frequency, a global single index [35]. Instead, in Eq. (2), the modal shapes
are compared location-by-location.

To minimize the cost function defined in Eq. (2), the inequality constraints
g(θ) in Eq. (1) are rewritten as an equality constraint and a log-barrier term
is added to prevent the constraint being violated [10]:

min
θ

f(θ)− µ
q∑
i=1

log(si)

s.t. g(θ) + s = 0,

(3)

where s ∈ Rq is the vector of slack variables, µ ∈ R is the barrier parameter
and log(·) denotes the natural logarithm. An additional constraint s ≥ 0
is implicitly included with the logarithmic term in Eq. (3) that prevents
the slack variables approaching zero. The barrier parameter µ is iteratively
reduced, as µ → 0, the minimizer of Eq. (3) approaches the minimizer of
Eq. (1) [10].
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From Eq. (3), a Lagrangian function to be minimized is defined [9]:

L(θ, s,Γ) = f(θ)− µ
q∑
i=1

log(si) + ΓT · (g(θ) + s), (4)

where L : Rr+q+q → R, Γ ∈ Rq is the vector of Lagrange multipliers and dot
(·) denotes the matrix or vector multiplication. The Lagrangian, Eq. (4), can
be minimized using an iterative Newtonian method. In each iteration j, the
following system of equations must be solved:∇2

θθLj 0 AT
j

0 Σj I
Aj I 0

 ·
dθds
dλ

 = −

∇f(θj) +AT
j · Γj

Γj − µS−1
j · 1

g(θj) + sj

 , (5)

where ∇2
θθLj ∈ Rr×r is the Hessian of Eq. (4), ∇f(θj) ∈ Rr is the gradient

of f(θj) and:
Aj =∇θ g(θj), Aj ∈ Rq×r

Sj =diag(s1, s2, . . . ), Sj ∈ Rq×q

Σj =S−1
j · diag(Γ1,Γ2, . . . ), Σj ∈ Rq×q

(6)

An identity matrix is chosen as the Hessian of the Lagrangian [36] in the first
iteration (j = 1), making the first step equivalent to the gradient-descent
method. In the subsequent iterations, the Hessian is approximated by the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula, Eqs. (7-8) [36], making
the procedure a quasi-Newtonian optimization.

∇2
θθLj+1 = ∇2

θθLj +
qj · qTj
qTj · dx,j

−
∇2
θθLj · dθ,j · dTθ,j · ∇2

θθLTj
dTθ,j · ∇2

θθLj · dθ,j
, (7)

where:
qj = ∇θ Lj+1 −∇θ Lj (8)

At every iteration, the new values of the parameters, slack variables and
Lagrange multipliers are obtained as:

θj+1 =θj + αj dθ

sj+1 =sj + αj ds

λj+1 =λj + αj dλ,

(9)
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where αj ∈ (0, 1] determines the step size in the directions dθ, ds and dλ. αj
is computed based on a backtracking line search algorithm [10], ensuring a
decrease in the cost function, Eq. (2), and preventing constraint violation.

The updating parameter θ is either a property of the numerical model
(e.g., density ρ) or a multiplier of this property. In this research, the pa-
rameters represent the property multipliers. The updated density ρup, for
example, is then computed as:

ρup = θ ρinit. (10)

3. Multi-level curvature-based parametrization and model updat-
ing

One of the major tasks in the model-updating procedure is the selection
of the updating parameters (joint stiffness, density of a segment of the FE
model, etc.) which requires significant engineering insight into a given prob-
lem [1]. Failing to select the appropriate updating parameters, the updated
model fails to represent the real structure adequately [28].

In the case of updating a single model property, e.g., the Young’s modulus,
the property of each element can be selected as an updating parameter,
however, updating a property of every finite element separately usually fails
to ensure adequate sensitivity of the structural response to all the updating
perimeters [29]. To improve the conditioning of the sensitivity matrix, the
FE segments are determined [3, 4], which means the full sensitivity matrix
must first be computed, a computationally expensive and, in cases of large
FE models, not a feasible process. For a test case, a model with 2700 finite
elements was used, where each evaluation of the numerical model took 9
seconds (on an HP ZBook i7). The evaluation of the sensitivities for all
finite elements would take almost 7 hours.

An alternative approach is to correlate the areas of large strain with areas
where mode shape is sensitive to parameter change. In addition, for bending
and some torsional modes (in general, for modes that cause deflection in the
normal direction to the surface) areas of high strain lead to areas of high
surface curvature, see Sec. 3.1. However this is not necessarily true for axial
and shear mode shapes. These generally have higher natural frequency and
lower displacements, making the measurement with the high-speed camera
a higher limiting factor compared to curvature detection. In this research,
curvature-based segmentation is introduced. The segments are determined
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by first identifying the curvature of a measured full-field modal shape and
only the areas of the structure with a large curvature are segmented (Fig. 4).
In contrast to existing methods, the presented method does not require nu-
merous model evaluations; moreover, the parameterization of a single mode
shape takes about 1 second (for 2300 points on an HP ZBook i7).

The curvature-based parametrization and the parametrization procedure
are researched in the following sections.

3.1. Curvature-based parametrization of an Euler-Bernoulli beam

The relation of the curvature to the sensitivity of the natural frequency to
the Young’s modulus change can be seen in the Euler-Bernoulli free vibrating
beam [37] governed by the differential equation:

∂2

∂x2

(
E(x) I

∂2ŵ(x)

∂x2

)
− ρω2 ŵ(x) = 0, (11)

where:
w(x, t) = ŵ(x) eiω t (12)

w(x, t) is the time-dependent deflection of the beam, ŵ(x) is the amplitude
of vibration, E(x) is the Young’s modulus dependent on the location x, ρ is
the density, I is the area moment of inertia (considered a constant for all x),
ω is the beam’s natural frequency and i =

√
−1. Given the assumptions of

the Euler-Bernoulli beam, the curvature of the beam is approximated as the
second derivative of the deflection [37]:

κ(x) ≈ ∂2ŵ(x)

∂x2
(13)

The relation between strain on the surface, ε, and the curvature, κ, is linear
and can be expressed as [37]:

ε(x) = −z ∂
2 ŵ(x)

∂ x2
= −z κ(x) (14)

where z is the coordinate of the beam surface.
If the curvature κ(x) of a section on a beam X ∈ [x1, x2] is theoretically

zero (in reality it is relatively small), from Eq. (13) it holds that:

∂2ŵ(x)

∂x2

∣∣∣
X

= 0 (15)
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Substituting Eq. (15) into Eq. (11), it is obvious that the change in Young’s
modulus E(x) in area X does not impact the beam’s natural frequency ω.
The sensitivity of ω to the Young’s modulus in area X is therefore zero or,
in reality, relatively small. In contrast, if the curvature is relatively large, so
is the sensitivity.

The described relationship between the curvature and the sensitivity is
presented for a numerical test case, where a beam with a free-free fixation
was approximated using 50 Euler-Bernoulli finite elements and the curva-
tures of the modal shapes were computed. The beam had dimensions of
500 mm×30 mm×15 mm, with a density of 7400 kg/m3, Poisson’s ratio of
0.3 and Young’s modulus of 180 GPa. The sensitivities of the eigenvalues
and modal shapes were computed by a numerical perturbation (0.1 %) of the
Young’s modulus for each element. As an example, the 4th modal shape
and the absolute values of the curvature κ(x) (13) are presented in Fig. 2a
(both normalized to show the relative amplitude with respect to location).
Fig. 2b shows the sensitivity of the eigenvalue and the sensitivity (averaged
for all locations) of the modal shape to the change in the Young’s modulus
at locations along the length of the beam.

Additionally, the curvature/sensitivity relationship is presented on a plate-
like structure, approximated with second-order tetrahedrons. In Fig. 3, the
areas of the plate with high curvature match the areas with high sensitivity.

0a) Modal shape

Abs. curvature

0.0 0.2 0.4 0.6 0.8 1.0

Position [m]

0

b) Eigenvalue sens.

Mode shape sens.

Figure 2: a) Normalized modal shape and curvature, and b) normalized eigenvalue and
average modal shape sensitivity.
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Modal shape

0.00 1.00
Curvature

1.84e-08 1.17e-05
Sensitivity

Figure 3: a) Modal shape of the plate, b) curvature of the upper surface of the plate and
c) sensitivity of the eigenvalue to the change of Young’s modulus.

3.2. Generalization of curvature-based parameterization

The curvature at point pi ∈ R3 is computed as an estimation of the
principal curvature, which is the maximum of the curvatures of the surface
intersections with all the planes perpendicular to the tangent plane at a given
point (normal curvatures) [38]. In this research, the principal curvature is
estimated based on the modified umbrella method [39], originally used to
estimate the Gaussian curvature. The details of the curvature estimation are
presented in Appendix A.

To determine the segments associated with the updating parameters the
areas with large curvature must be identified. A threshold value of curvature
is selected and the areas with curvature larger than the threshold are seg-
mented, see Fig. 4. Hierarchical clustering [30], with the average Euclidean
distance of the element centers as a measure, is used for the segmentation.
The areas with curvature values lower than the threshold value are viewed
as a single segment and are given a single updating parameter.

The curvature-based parametrization is performed for each modal shape
separately and the model is updated in multiple levels; in level i, the param-
eters are computed based on the curvature of the i-th modal shape. Param-
eters identified on level i − 1 are used as a starting point in level i. Modal
shapes and eigenvalues from modes [0, i] are included in the residual vector,
all of the modal shapes are location-weighted by the curvature of the i-th
modal shape.

The finite elements with a similar location and value of the updated pa-
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0.00 1.00
Curvature

0.00 11.0
Parameters

X Y

Z

X Y

Z

Figure 4: a) Curvature and b) example of parameter segments.

rameters from level i−1 are clustered and combined with the segments from
the curvature-based parametrization (Fig. 5) to ensure that the initial param-
eter values within a segment have similar values. Hierarchical clustering [30],
with the average Euclidean distance as a measure, is used; the FE locations
and parameter values are equally weighted:

D =


x0 y0 z0 E(x0, y0, z0)
x1 y1 z1 E(x1, y1, z1)
...

...
...

...
xnel

ynel
znel

E(xnel
, ynel

, znel
)

 ·

wloc

wloc

wloc

wpar

 , (16)

where wloc and wpar are scalar weights, ensuring equal weighting of the loca-
tion and parameter values:

wloc =
1√∑nel

k=0(x
2
k + y2k + z2k)

(17)

wpar =
1√∑nel

k=0E(xk, yk, zk)2
(18)

The coordinates xk, yk and zk are determined as average values of the nodal
coordinates of the k-th element, and nel is the number of elements in the FE
model.
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Figure 5: Combining curvature-based parameters and the clustered parameters from level
i− 1.

3.3. The multi-level curvature-based model-updating algorithm

The multi-level curvature-based model-updating procedure has the fol-
lowing steps:

1. Prepare experimental data.

2. Prepare numerical model:

(a) Define the FE mesh.
(b) Align the numerical model with the experimental locations (Ap-

pendix B).
(c) Define the initial parameter values.

3. Curvature-based parametrization (Sec. 3.2):

(a) Compute curvature of modal shapes.
(b) Determine threshold curvature and select areas with large curva-

ture.
(c) Compute the segments associated with the updating parameters.

4. Location matching - compute the approximation of the measured modal
shapes at nodes of the finite-element model Appendix B).

5. Start the iteration over the measured modal shapes (i = 0):

(a) Match numerical modes to the measured mode.
(b) If i 6= 0, cluster similar parameter values, Eq. (16).
(c) If i 6= 0, combine parametrizations from step 3. and step 5.(b),

see Fig. 5.
(d) Use the Interior Point Method to identify the parameters (Sec. 2.2)

for each segment.
(e) Update the FE model’s properties of each segment by multiplying

them by the identified parameter, Eq. (10).
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(f) Increment i = i+ 1 and repeat from step 5.(a).

The iteration starts with the mode at the lowest natural frequency since the
modal shapes at lower frequencies are better related to the global response of
the structure and are also related to larger amplitudes. With this approach,
the global behaviour of the structure is corrected first, after which the local
anomalies are addressed. The identified parameters from the last iteration i
are the result of the model-updating procedure.

4. Numerical experiment

A numerical experiment where the true parameter values are known was
conducted to test the proposed parametrization and updating method. In
this section the data acquired by the numerical experiment are referred to as
the experimental data.

A numerical model of a 3-plane cubic shell with three orthogonal sides of
size 120 mm × 120 mm (Fig. 6a) was used to numerically generate the data
for the experimental model. A finite-element mesh with 14 419 second-order
tetrahedrons was generated (Fig. 6b). The material properties were assigned
to the finite elements. The material density ρ was 7850 kg/m3, its Young’s
modulus E was 200 GPa and its Poisson’s ratio ν was 0.3. The Young’s
modulus was locally reduced to 80 GPa, as marked in Fig. 7a.

The 3D finite elements (tetrahedrons) are used in the numerical and real
experiments in this research since they enable a rapid FE model prepara-
tion without extensive 3D-model simplifications. Membrane, plate or shell
elements can also be used, depending on the structure type and user in-
sight/preference.

The eigenvalues and modal shapes were identified for the experimental
model; however, first seven modal modes were included in the experimental
data to simulate a common real-measurement issue of unmeasured modes.
Because no damping was included, the modal shapes were strictly real.

To simulate the noisy measurements, a normally distributed noise was
added to the modal shapes:

φ̂ = φ+ ∆, (19)

where φ ∈ Rle is the noise-free modal shape, φ̂ ∈ Rle is the noisy modal shape
and ∆ ∈ Rle are samples of zero-mean normal distribution with the standard
deviation σ = 0.15φ, where φ is the average of the modal shape. The added
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Figure 6: a) Numerical model for experiment simulation and b) the finite-element mesh
with 14 419 elements.

noise is relatively high and corresponds to the one observed in high-speed-
camera measurements. Similarly, the noise was added to the eigenvalues:

λ̂ = λ+ ∆, (20)

where λ ∈ R is the noise-free eigenvalue, λ̂ ∈ R is the eigenvalue with noise
and ∆ ∈ R is a sample of zero-mean normal distribution with σ = 0.03λ.

The numerical model to be updated was similar to the experimental model
(Fig. 6a); however, the number of elements was 4755 (as opposed to 14 419 for
the simulated high-spatial density measurement with the high-speed camera).
All the elements were given the same initial Young’s modulus E of 190 GPa;
density ρ and Poisson’s ratio ν were assumed to be known and had values of
7850 kg/m3 and 0.3, respectively.

The updating procedure was carried out as described in Sec. 3.3. The
true values of the Young’s moduli are compared with the updated Young’s
moduli in Fig. 7. It is clear from Fig. 7 that the region with the lowered
Young’s modulus was identified. The error of the updated Young’s modulus
Eup ∈ Rnn with respect to the true values Etrue ∈ Rne was computed:

err =
(Etrue, appr. −Eup)abs

Etrue, appr.

· 100 %, (21)

where Etrue, appr. ∈ Rnn are the approximated values of Etrue at the locations
of Eup, a necessary step caused by non-identical FE meshes. (·)abs denotes
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Figure 7: a) True Young’s modulus values, b) updated Young’s modulus values and c) the
error in parameter identification.

taking the element-wise absolute value. The average of err was computed to
be 5 %; the largest error (120 % in one of the elements) appeared at the edges
of the area with the lowered stiffness. This was caused by the discrepancy of
the mesh; the elements were not lined-up accurately and an approximation
was used to compare the Young’s moduli.

Figs. 8a and 8b show the MAC matrices before and after updating, it
is obvious that the updated numerical model represents the experimental
modal shapes significantly better than the initial model. It can also be
seen from Fig. 8b that the matching modes are not on the diagonal but
are shifted, indicating the numerical modes that were not measured. The
MAC values of the matching modes are presented in Fig 8c, it is clear that
all the updated MAC values are nearly close to unity; the minimal MAC
value for the updated model is 0.98, while for the initial model it is 0.49,
the average value of MAC for updated model is 0.994 and for the initial
model it is 0.81. The MAC values significantly increased even for the modes
that were not included in the updating procedure. In addition to the MAC
values, the comparison of eigenvalues in Fig. 9, also shows that the updated
numerical model represents the experimental model well; the eigenvalues
from the updated model are closer to the experimental values and, similar
to the MAC values, the eigenvalues that were not included in the updating
procedure also approached the experimental values; the average error before
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Figure 8: a) MAC matrix with initial Young’s modulus values, b) MAC matrix with
updated Young’s modulus values and c) comparison of the MAC values of the matching
modes.

the updating was 1 % and after updating it was 0.1 %.
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Figure 9: Comparison of the normalized eigenvalues of the initial and updated numerical
model.
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5. Real experiment

To validate the proposed method, a laboratory experiment was con-
ducted. The structure under test was a 3-plane cubic shell with three orthog-
onal sides of 120 mm × 120 mm. The shell was manufactured by bending a
1-mm-thick metal sheet and welding the connection between two sides (see
Fig. 10a). A mounting hole with a diameter of 10 mm was added in the cor-
ner of the cubic shell, where the metal sheet was bent to form a triangular
flat spot with a height of 25 mm. A speckle pattern was generated using the
speckle-pattern Python package [40] and was printed on a sticker and applied
on the inner surface of the structure (Fig. 11).

Three single-axis accelerometers were attached to the sides at the loca-
tions indicated in Fig. 10b to monitor the structure’s response during the
measurement. The structure was excited with an LDS V406 electrodynamic
shaker and a PCB 208C01 force transducer was inserted between the struc-
ture and the shaker to measure the excitation force (used to normalize the
response, see Sec. 2.1). The signals from the accelerometers and the force
transducer were sampled using a NI-9234 acquisition card at 25 600 samples
per second for a duration of 2 seconds. A random excitation signal was gen-
erated using the pyExSi [41] Python package to excite the structure up to
2000 Hz. In addition to the accelerometers, the response of the structure was
measured with the Photron SA-Z high-speed camera (Fig. 12) with a sam-
pling frequency of 20 000 Hz and a duration of 2 seconds. A chequerboard
pattern was captured at different angles to calibrate the camera [42]. The
shaker was rotated for each of the total of six measurements, to ensure multi-
ple views (Fig. 13) of the structure, needed to perform the frequency-domain
triangulation (see Sec. 2.1). The camera positions, based on which the tri-
angulation was performed, are shown in Fig. 13. The displacements were
identified in each view for 2637 points using the Python package pyIDI [43].
A Lucas-Kanade [44] algorithm with a subset size of 21× 21 was used. The
frequency-domain triangulation method (Sec. 2.1) was used to identify the
3D response and the force measurement was used to normalize the response
and obtain the FRFs. The Python package pyEMA [32] was used to identify
the modal shapes from the FRFs.

A 3D model of the cubic shell was designed and second-order tetrahedrons
were used to construct the FE model. The model was rotated so that the
triangular flat spot was parallel to the x−y plane. Rigid fixation was applied
in the x and y directions, but the model was not fixed in the z direction since
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2

13

Figure 10: a) Shell manufacturing welds and bends. b) Accelerometer positions.

Figure 11: Speckle pattern on the structure and marked area of fixation.

the force was measured in the z direction [45]. The fixation location was an
area with a radius of 18 mm, marked in the magnified part of Fig. 11. The
density of the material and the Poisson’s ratio were assumed to be known
and were 7850 kg/m3 and 0.3, respectively. The initial guess for the Young’s
modulus was 190 GPa for all elements. Each of the three accelerometers had
a mass of 4 g, was modelled as a point mass and was attached to the node
nearest to its true position.

The Interior Point Method was used to update the numerical model ac-
cording to the algorithm presented in Sec. 3.3. Six eigenvalues and modal
shapes were used in the updating procedure; therefore, the model was up-
dated in six levels. In each level, the parameterization was performed and
new parameter values were identified. The parameters identified in the sixth
level were considered to be the final result.

The updated Young’s moduli were computed by multiplying the identified
parameters by the initial Young’s moduli; the resulting moduli are presented
in Fig. 14. The cubic shell is welded along the edge in the z-direction and
it can be seen that the stiffness is lower along that edge. The lower Young’s

19



Figure 12: a) Experimental setup scheme and b) real experimental setup.

Figure 13: Camera positions identified from the images.

modulus was to be expected as a result of reduced stiffness due to a crack in
the weld (part of the weld failed completely when the experiment was disas-
sembled). Upon closer inspection, it was found that the affected area was 37
mm in length from the top edge of the cube. Additionally, a region with a
higher Young’s modulus in the x− y plane was identified, which was not ex-
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pected at that location. After an examination of the cubic shell, it was found
that the side of the shell was not flat but slightly curved (an approx. 2 mm
difference in height between the center and the edges), making the structure
appear more stiff. The numerical model was corrected by adding a spherical
curvature and the updating procedure was repeated. The parameter history

50.0 87.5 125. 162. 200.
Young's modulus [GPa]

X Y

Z

Figure 14: Identified Young’s moduli for straight modeled sides.

for the first three levels is presented in Fig. 15 and the resulting Young’s
moduli are shown in Fig. 16. It is clear that the area with the reduced stiff-
ness remains, while large variations of the modulus are not present in other
parts of the structure. Fig. 17a shows that after updating, most eigenvalues
are closer to the measured values, including the ones not included in the up-
dating procedure; the average value of the normalized eigenvalue increased
from 0.76 to 0.89. Fig. 17b shows the matching MAC values, most of which
are closer to unity after the updating procedure; the average MAC value
increased from 0.43 to 0.69.

6. Conclusions

A multi-level curvature-based parametrization approach was introduced
in this research, enabling the parametrization of the numerical model without
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Figure 15: Parameter history for the first three levels.
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Figure 16: Identified Young’s moduli of the structure with one (bottom) curved side.

pre-existing knowledge of the structure or significant engineering insight.
The parameterization ensures the required sensitivity of the response to the
parameters. The parameters are determined based on the curvature of each
individual 3D full-field experimental modal shape and the model is updated
using each parametrization consecutively. The relation between the curvature
and the sensitivity was demonstrated on an Euler-Bernoulli beam and second-
order tetrahedral elements. The numerical experiment was used to generate
the experimental data with known parameter values. The parameters were
correctly identified with the proposed method; the eigenvalues and the MAC
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Figure 17: a) Normalized eigenvalues and b) MAC values of matching modes before and
after updating.

values also showed significant improvement in the correlation between the
model and experimental data.

The findings from the numerical experiment were confirmed on the real
experiment, where an expected anomaly was identified (a reduced Young’s
modulus in the cracked weld area). Additionally, the method identified an
error in the modelling of the structure; after correcting the error, the cor-
relation between the numerical model and the real structure increased, as
indicated by the eigenvalues and the MAC values. This is also true for the
modal shapes that were not included in the updating process.

It is worth mentioning that the introduced method is most suitable for
shell-like structures, since the high-speed camera measures the structural
response on the surface.

The proposed parametrization and model-updating method successfully
identified the model parameters without significant user input. The corre-
lation between the response of the updated numerical model and the real
structure was improved and the structural anomalies were identified.
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Appendix A. Curvature estimation

In the umbrella method, a normal vector ni ∈ R3 is first estimated. To
estimate the curvature at point pi, the c closest points that are homoge-
neously distributed around pi are identified by splitting the 360◦ into c slices
and finding the closest neighbour to pi in each slice, see Fig. A.1. To com-
pute the normal curvature, as opposed to the Gaussian curvature, using the
umbrella method, the closest neighbour in the opposing slice pj is found for
each pj, where j = 0 . . . c/2, and the normal curvature is estimated for each
pair:

κi,j =
1

2

[
abs
( pj − pi
|pj − pi|

· ni
)

+ abs
( pj − pi
|pj − pi|

· ni
)]
, (A.1)

The maximum normal curvature (principal curvature) at point pi is estimated
as:

κi = max
j

(κi,j) (A.2)

Figure A.1: Homogeneous closest neighbours.

25



Appendix B. Modal-shape location matching

The numerical and experimental models are generally not aligned prop-
erly and do not have the same number of nodes (measurement locations).
First, the models must be aligned, which was achieved by rotation and trans-
lation of the numerical model to minimize the distances between the locations
on both models. The approach is known as Point Cloud Registration [46].
Second, because of the difference in the number of locations, the sizes of the
modal shapes from the numerical model φ ∈ Rmn×ln and the experimen-
tal model φ̂ ∈ Rme×le were not equal (ln 6= le) and the locations did not
match. A simple comparison of closest points was found to not give the best
results in the updating procedure. To enable a better direct comparison of
the modal shapes, the experimental modal shapes φ̂ (defined at locations
P̂ ∈ Rle×3) were approximated at the locations P (locations of the numer-
ical modal shapes φ). To compute the approximated experimental modal
shape at location pi, denoted by apφ̂i, c homogeneous closest neighbours p̂ij,

j = 1 . . . c, to pi were found (see Fig. A.1). The influence of φ̂p̂ij on apφ̂i
linearly decreased with the distance ||pi − p̂ij||. The inverse values of the
distances between p and the c closest points were therefore used as weights.
The weight, wi ∈ R, of the i-th closest point pi ∈ R3 is defined as:

wij =
1

dij
· wn,i, (B.1)

where dij ∈ R is the distance between p̂ij and pi and wn,i ∈ R is a normal-
ization constant ensuring that: ∑

j

wij = 1 (B.2)

and is defined as:

wn,i =

(∑
j

1

dij

)−1

(B.3)

To compute the value of the modal shape apφ̂i at location pi:

apφ̂i =
∑
j

φ̂p̂ij wij, (B.4)
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Since multiple closest neighbours (in this research, eight were used) were used
to compute the apφ̂i, local smoothing was implicitly applied, decreasing the

noise level of apφ̂i (with the assumption of zero-mean normally distributed
noise).
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v0.23, 2020.

[44] B. D. Lucas and T. Kanade. An Iterative Image Registration Technique
with an Application to Stereo Vision. In Proceedings of the 7th Interna-
tional Joint Conference on Artificial Intelligence - Volume 2, IJCAI’81,
pages 674–679, San Francisco, CA, USA, 1981. Morgan Kaufmann Pub-
lishers Inc.
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